Tutorial
Maverick Roller Coaster
Implementing script to utilize the Intamin “Multi-Move” function

Written by Jason Schindwolf (coasterlover420)

I suggest following along with the script in another window to understand the way the script itself should be laid out. Certain things are customizable and certain things are necessary for any block system controller. In this tutorial, I will do my best to help the reader to understand the full potential of the block system controller and understand the way I decided to design the “multi-move” function. Keep in mind, this is not a tutorial on how to understand the language! If you need help understanding Java, look for tutorials online before diving into this. This tutorial is only to show how to implement the functions of NL2 to create a functioning block controller.

If anything within the tutorial seems unclear or if there is something that is not easily understood (or if I simply messed something up), or if any other general questions about the block controller arise, I always accept PMs or emails with questions! I will definitely be able to help! (coasterlover420@gmail.com)

****I must also provide a disclaimer: with this script, the error for multiple trains on one block will still appear. However, it will only appear once, and will not stop the script. After this happens, simply close the messages window and it will work fine.****

The first step is required for all scripts in NL2. We must call the necessary classes for the script. The script doesn't use any math, so our first line will only look like this:
import com.nolimitscoaster.*;

The * calls all of the coaster classes, so there's no need to call any of them individually. If we were to use any kinds of mathematical formulas, we could also call:
import nlvm.lang.Math;
This is not necessary for this script, so we will leave it out.

The next step is to define the script itself and set any classes implemented for the public functions:
public class BlockScript extends Script implements BlockSystemController

BlockScript is the name of the file we save as the script. If the file is named whatever.nlvm, we would place whatever in place of BlockScript. The public functions we will use are all within BlockSystemController so that is the class we will implement directly.

Next we will define any variables we will be using throughout the entire script. The first definitions will be any different states the blocks can be in. I have opted to create certain states that help with multi-move as well as any typical states that will control the other normal blocks on the circuit...as follows:

private static final int CLEAR = 0;

private static final int APPROACHING = 1;

…

private static final int DISPATCHREADY = 13;

...and so on. Don't worry about deciding all of the states you will need right when you start the script, you can always come back here and add more variables you will need if you decide you need another one. Keep in mind they do not have to be in any particular order and they don't have to be defined with any particular integer, but the integer itself is necessary. After this point we will only deal with the name itself.

Next will be the operation modes:

private static final int AUTO = 0;

private static final int MANUAL = 1;

private static final int FULL_MANUAL = 2;

These are the only 3 modes, so these aren't customizable. You can name them whatever you wish, but keep in mind the script does not process spaces, so FULL MANUAL will not work, whereas FULL_MANUAL will.

Next will be the coaster itself and all of the implemented blocks on the circuit, as well as any switch tracks:

private Coaster coaster;

private Block lift;

private Block coasting1;

…

private SpecialTrack transferTable;

Another thing to keep in mind is that everything is case-sensitive. I choose not to name anything with capital letters unless it is two words. For instance: lift, coasting, waiting. If I had a two word variable, I would name it: blockBrake, transferTrack, stationLeft, etc... If your script is returning an odd error, the first thing to check is capitalization errors.

Next we'll define any other variables we want to create. In this script, every block in the station area is timed. Therefore I've essentially created timers for each block. These will not be integers, so we will use float instead of int:

private float waitingTime = 0;

private float station1Time = 0;

...

etc...

These variables do not need to be defined right away, however I've chosen to set them to 0 right away. It's not necessary.

The final variable to define is the mode. This will help in defining certain parts of the script so it knows what mode the coaster is in at any given time:

private int mode;

If you're not familiar with the language, knowing the difference between bool and void is important. Bool is a function that will either return true or false. Void functions will not return anything, but will run the commands within them.

We've finished defining all of our variables. Let's get into defining the blocks. This function will only be called upon opening the script. This is everything we will condition in order for the script to run. If it returns false, the script will not run:

public bool onInit()

{

We'll first define the coaster itself. Since the script is attached to the coaster directly, we won't have to worry about the name of the coaster. We can simplify it to this:

coaster = sim.getCoasterForEntityId(getParentEntityId());

if (coaster == null) return false;

coaster.setBlockSystemController(this);

An option you can implement is to have the script display error messages if the coaster or a certain block is not found. That would look like this:

coaster = sim.getCoasterForEntityId(getParentEntityId());

if (coaster == null)

{

 System.err.println([Whatever error we would like to display]);

 return false;

}

coaster.setBlockSystemController(this);

You can set the error to display whatever you like.

Next is the block. We'll do each one individually:

lift = coaster.getBlock(“Dispatch Front/Lift”);

if (!initializeBlockState(lift, “Dispatch Front/Lift”) return false;

Again, the error message can be implemented here if you wish. The initializeBlockState() function will be defined later in the script. Keep in mind that ! negates the function it is attached to. Therefore, this if statement will return false if the initializeBlockState bool function returns false. This function is necessary because it will set all of the states possible for the block and tells the control panel in the simulator how to react to them. This includes manual control buttons and block lights.

After each block, we'll define which buttons this block can use:

lift.setAdvanceFwdVisible(true);

lift.setAdvanceBwdVisible(true);

This is where you will decide whether or not each block will be able to move forward or backward. We will define how that happens later in the script.

Keep following the script along with this tutorial so you know where these lines are placed in the script.

Since the simulator begins in auto mode by default, we will have to define our mode variable as AUTO so that the script will function properly:

mode = AUTO;

Then we will end the bool to return true if none of the blocks give errors:

return true;

}

The next function isn't used in our script, but we must include it anyway:
public void onExit()

{

}

This defines anything that will happen when the script is closed. Since the only way to close the script is to close the simulator, this won't be necessary.

The next function in the BlockSystemController is onNextFrame(). This will define everything that happens second by second. This will run the entire time the coaster is open in the simulator. Within this, we will process all of the blocks so that they continue to function (hopefully properly) while the coaster is running.

What I have done in this case is split the functions of auto mode and manual mode into two separate processes. This helps with the multi-move function because manual mode is rather intuitive, whereas auto mode with multi-move is much more complicated. The script will follow:

public void onNextFrame(float tick)

{

 if (mode == AUTO)

 {

 autoLift();

 autoCoasting1();

 autoCoasting2();

 …

 autoStation1();

 updateControlPanel();

 }

In the instance of auto mode, the storage tracks will not function at all. Therefore, we will not need to include an autoStorage() function. This saves time and helps the script run a little bit faster. updateControlPanel() will also be defined later. It is a process that updates the state of each block so the control panel knows if a block can advance forward or backward.

Next will be the manual processes:

 if (mode == MANUAL)

 {

 manualLift();

 manualCoasting1();

 …

 updateControlPanel();

 }

}

These both are what will run the entire time the coaster is operating. We will define each individual process at the end of the script, and it will take the most amount of time and debugging.

Our next function is what will happen when the auto mode button is pressed on the control panel:

public void onAutoMode(Coaster c)

{

 if (mode == FULL_MANUAL)

 {

 setInitialBlockState(lift);

 setInitialBlockState(coasting1);

 …

etc...

The reason for this is if the coaster is in full manual mode, we need to find the trains because they could be anywhere. We'll define how to do that later in the setInitialBlockState() section.

This is the same for the onManualBlockMode() and onFullManualMode(). Follow along in the script to see how to define them.

Next we will define what happens when any of the advance Fwd/Bwd buttons are pressed in manual mode:

public void onAdvanceFWDButton(Block block)

{

 if (block == lift)

 {

 coasting1.setState(APPROACHING);

 lift.setState(LEAVING);

 }

 else if (block == coasting1)

 {

 coasting2.setState(APPROACHING);

 coasting1.setState(LEAVING);

 }

etc...

It is important here to use else if because if this isn't implemented, we could be moving unnecessary blocks by accident. Again, follow along in the script to see how this whole section is finished. Keep in mind that capitalization is very important. This is the only place where FWD and BWD will be in all caps. Look very closely.

Certain special cases in this will include functions for the transfer track:

 else if (block == transfer)

 {

 if (transferTable.getSwitchDirection() == 0)

 {

 lift.setState(APPROACHING);

 transfer.setState(LEAVING);

 }

 else

 {

 storage1.setState(APPROACHING);

 transfer.setState(LEAVING);

 }

 }

This is basically saying if the transfer advance forward button is pressed, the script needs to know which position the transfer track is in so it knows which block it will be entering.

Also, for storage tracks, we have to un-lash the train before it can move:

 else if (block == storage1)

 {

 Train train = block.getSection().getTrainOnSection();

 if (train != null) train.setLashedToTrack(false);

 storage2.setState(APPROACHING);

 storage1.setState(LEAVING);

 }

The format will be the same for onAdvanceBWDButton(). Keep in mind you will only define which blocks can move backward. If a block can't move backward, leave it out of this section.

We will now define our function from before, initializeBlockState():

private static bool initializeBlockState(Block block, String name)

{

 if (block == null)

 {

 System.err.println(“:Block'” + name + “' not found”);

 return false;

 }

 registerBlockStates(block);

 setInitialBlockState(block);

 return true;

}

I've opted here to include the error message, since it is hard to follow the blocks. Make sure in the editor, the blocks, and special tracks are named exactly how they are defined in the script!
setInitialBlockState() is our next one. This will detect if there is a train on the block and sets the block state accordingly. In my script, the WAITING state is the only one defined for every block in both auto and manual mode. Therefore we will use it to define the initial state of each block:

private static void setInitialBlockState(Block block)

{

 if (block.getNumberOfTrainsOnBlock() > 0) block.setState(WAITING);

 else block.setState(CLEAR);

}

Next will be our block registry. This will define the lamps on the control panel and set every state to each block individually. This is also an area that is customizable. You can pick whichever states will be LAMP_OFF, LAMP_FLASHING, or LAMP_ON. Here is how I decided:

private static void registerBlockStates(Block block)

{

block.registerState(CLEAR,"Clear",Block.LAMP_OFF);

block.registerState(APPROACHING,"Approaching",Block.LAMP_FLASHING);

block.registerState(APPROACHING_R,"Approaching in Reverse",Block.LAMP_FLASHING);

block.registerState(ENTERING,"Entering",Block.LAMP_ON);

block.registerState(ENTERING_R,"Entering in Reverse",Block.LAMP_ON);

block.registerState(TRIGGER,"Trigger Point",Block.LAMP_ON);

block.registerState(WAITING,"Waiting For Clear",Block.LAMP_ON);

block.registerState(READY,"Ready to Move",Block.LAMP_ON);

block.registerState(READY_F,"Ready to Move Forward",Block.LAMP_ON);

block.registerState(READY_R,"Ready to Move in Reverse",Block.LAMP_ON);

block.registerState(DISPATCH,"Dispatching",Block.LAMP_FLASHING);

block.registerState(DISPATCHREADY,"Dispatch Ready",Block.LAMP_ON);

block.registerState(LEAVING,"Leaving",Block.LAMP_ON);

block.registerState(LEAVING_R,"Leaving in Reverse",Block.LAMP_ON);

}

You may also decide what you want each state to display. The text within the quotes can be whatever you wish, however I suggest something that will help you to decipher the mode the block is in while you're in the simulator. If a block is not behaving correctly, you want to know what state it is in so that you can find the problem in the code easily. These will show up in the control panel next to the block lamps.

Our next step to update the control panel is a bit more complicated because we will have to know which blocks can move both backward and forward. If a block can only move in one direction, I've used only the READY state. If a block can move in both directions, I've implemented all three READY, READY_F, and READY_R. If the block is ready to move in either direction, the state is READY. If it is only ready to move forward, the state is READY_F. Get it?

The result is this:

private void updateControlPanel()

{

lift.setAdvanceFwdEnabled(lift.getState() == READY || lift.getState() == READY_F);

coasting1.setAdvanceFwdEnabled(coasting1.getState() == READY);

coasting2.setAdvanceFwdEnabled(coasting2.getState() == READY);

waiting.setAdvanceFwdEnabled(waiting.getState() == READY);

pre2.setAdvanceFwdEnabled(pre2.getState() == READY);

pre1.setAdvanceFwdEnabled(pre1.getState() == READY || pre1.getState() == READY_F);

station2.setAdvanceFwdEnabled(station2.getState() == READY || station2.getState() == READY_F);

station1.setAdvanceFwdEnabled(station1.getState() == READY || station1.getState() == READY_F);

transfer.setAdvanceFwdEnabled(transfer.getState() == READY || transfer.getState() == READY_F);

storage1.setAdvanceFwdEnabled(storage1.getState() == READY || storage1.getState() == READY_F);

storage2.setAdvanceFwdEnabled(storage2.getState() == READY || storage2.getState() == READY_F);

storage3.setAdvanceFwdEnabled(storage3.getState() == READY || storage3.getState() == READY_F);

storage4.setAdvanceFwdEnabled(storage4.getState() == READY || storage4.getState() == READY_F);

lift.setAdvanceBwdEnabled(lift.getState() == READY || lift.getState() == READY_R);

pre1.setAdvanceBwdEnabled(pre1.getState() == READY || pre1.getState() == READY_R);

station2.setAdvanceBwdEnabled(station2.getState() == READY || station2.getState() == READY_R);

station1.setAdvanceBwdEnabled(station1.getState() == READY || station1.getState() == READY_R);

transfer.setAdvanceBwdEnabled(transfer.getState() == READY || transfer.getState() == READY_R);

storage1.setAdvanceBwdEnabled(storage1.getState() == READY || storage1.getState() == READY_R);

storage2.setAdvanceBwdEnabled(storage2.getState() == READY || storage2.getState() == READY_R);

storage3.setAdvanceBwdEnabled(storage3.getState() == READY || storage3.getState() == READY_R);

storage4.setAdvanceBwdEnabled(storage4.getState() == READY || storage4.getState() == READY_R);

storage5.setAdvanceBwdEnabled(storage5.getState() == READY);

}

The blocks that can move in both directions will have four possible states, able to move both directions, able to move forward only, able to move backward only, or not able to move in either direction. In the instance of fwd, it will be able to move forward whether or not the block behind it is occupied, therefore the button will be enabled in both the READY and the READY_F states. I hope that makes sense.
Keep in mind that in this section, Fwd and Bwd are NOT in all caps!! Also, || means “or.” Keep up with your Java!

The next and final step is to define the processes of each block individually. This is the most tedious part of script writing and should be very well thought out before written. Decide what you want your blocks to do before you write the functions out. If you go right into this, your blocks could end up not matching with each other, and they will not function correctly. Typically I write up a “dummy block” and have it open in another window as I'm writing each one individually so that they all come out similar. They aren't exactly the same, but the template helps with keeping them consistent with each other. If I write out a dummy block for manual mode, it will look something like this:

private void manualDummy()

{

switch (dummy.getState())

{

case CLEAR:

 dummy.getSection().setTransportsOff();

 dummy.getSection().setBrakesOn();

 break;

case APPROACHING:

 dummy.getSection().setBrakesTrim();

 dummy.getSection().setTransportsStandardFwdOn();

 if (dummy.getSection().isTrainOnSection()) dummy.setState(ENTERING);

 break;

case APPROACHING_R:

 dummy.getSection().setBrakesOff();

 dummy.getSection().setTransportsStandardBwdOn();

 if (dummy.getSection().isTrainOnSection()) dummy.setState(ENTERING_R);

 break;

case ENTERING:

 if (dummy.getSection().isTrainBehindBrakeTrigger()) dummy.setState(WAITING);

 break;

case ENTERING_R:

 if (dummy.getSection().isTrainBeforeCenterOfSection()) dummy.setState(WAITING);

 break;

case WAITING:

 dummy.getSection().setTransportsOff();

 dummy.getSection().setBrakesOn();

 if (nextBlock.getState() == CLEAR && previousBlock.getState() == CLEAR) dummy.setState(READY);

 else if (nextBlock.getState() == CLEAR) dummy.setState(READY_F);

 else if (previousBlock.getState() == CLEAR) dummy.setState(READY_R);

 break;

case READY:

 if (nextBlock.getState() != CLEAR || previousBlock.getState() != CLEAR) dummy.setState(WAITING);

 break;

case READY_F:

 if (nextBlock.getState() != CLEAR || previousBlock.getState() == CLEAR) dummy.setState(WAITING);

 break;

case READY_R:

 if (nextBlock.getState() == CLEAR || previousBlock.getState() != CLEAR) dummy.setState(WAITING);

 break;

case LEAVING:

 dummy.getSection().setBrakesOff();

 dummy.getSection().setTransportsStandardFwdOn();

 if (dummy.getNumberOfTrainsOnBlock() == 0) dummy.setState(CLEAR);

 break;

case LEAVING_R:

 dummy.getSection().setBrakesOff();

 dummy.getSection().setTransportsStandardBwdOn();

 if (dummy.getNumberOfTrainsOnBlock() == 0) dummy.setState(CLEAR);

 break;

}

}

There are many things to consider in the case of processing a block.

First of all, it's important to know which of the block states will be necessary. In this case , the block is in manual mode so the brake trigger won't matter. Also, if the block cannot move backward, LEAVING_R will be left out. However, if the next block can move backward, APPROACHING_R and ENTERING_R will be necessary. In a case that the dummy block can move backwards, but the next block cannot, LEAVING_R is necessary, but APPROACHING_R and ENTERING_R will not be.

Second, since this process is only for manual mode, we will not need to include setState(LEAVING) or setState(APPROACHING) for anything, considering this will happen anyway when the advance buttons are pressed (see onAdvanceFWDButton/onAdvanceBWDButton for reference).

Third, the reason I've set up the WAITING and READY states is to control the advance buttons very accurately. As you can see, the states in the process change depending on how the next and previous blocks are behaving. You'll see that in READY, when something changes with either block, I simply send it back to WAITING, from waiting, the block can again determine the states of the next and previous blocks and set it back to the appropriate READY state. Remember once again that the use of else if is very important here, because if it is only a list of if statements, the lower ones will always override the previous ones.

The case of station blocks is rather different. The internal station handler controls the trains while they are in the station, which overrides any commands about the brakes and transports. The station block will be laid out a bit differently.

private void manualStation()

{

switch (station.getState())

{

case CLEAR:

 station.getSection().setTransportsOff();

 station.getSection().setBrakesOn();

 break;

case APPROACHING:

 station.getSection().setBrakesOff();

 station.getSection().setTransportsStandardFwdOn();

 if (station.getSection().isTrainOnSection()) station.setState(ENTERING);

 break;

case APPROACHING_R:

 station.getSection().setBrakesOff();

 station.getSection().setTransportsStandardBwdOn();

 if (station.getSection().isTrainOnSection()) station.setState(ENTERING_R);

 break;

case ENTERING:

 station.getSection().setStationEntering();

 station.setState(WAITING);

 break;

case ENTERING_R:

 station.getSection().setStationEntering();

 station.setState(WAITING);

 break;

case WAITING:

 station.getSection().setStationNextBlockOccupied();

 if (station.getNumberOfTrainsOnBlock() == 0) station.setState(CLEAR);

 if (nextBlock.getState() == CLEAR && previousBlock.getState() == CLEAR) station.setState(READY);

 else if (nextBlock.getState() == CLEAR) station.setState(READY_F);

 else if (previousBlock.getState() == CLEAR) station.setState(READY_R);

 break;

case DISPATCHREADY:

 station.setState(WAITING);

 break;

case READY:

 station.getSection().setStationNextBlockClear();

 if (nextBlock.getState() != CLEAR || previousBlock.getState() != CLEAR) station.setState(WAITING);

 break;

case READY_F:

 station.getSection().setStationNextBlockClear();

 if (nextBlock.getState() != CLEAR || previousBlock.getState() == CLEAR) station.setState(WAITING);

 break;

case READY_R:

 station.getSection().setStationNextBlockClear();

 if (nextBlock.getState() == CLEAR || previousBlock.getState() != CLEAR) station.setState(WAITING);

 break;

case DISPATCH:

 if (station.getNumberOfTrainsOnBlock() == 1 && station.getSection().isTrainBeforeCenterOfSection()) station.setState(ENTERING);

 if (station.getNumberOfTrainsOnBlock() == 0) station.setState(CLEAR);

 break;

case LEAVING:

 station.getSection().setStationLeaving();

 station.getSection().setBrakesOff();

 station.getSection().setTransportsStandardFwdOn();

 if (station.getNumberOfTrainsOnBlock() == 0) station.setState(CLEAR);

 break;

case LEAVING_R:

 station.getSection().setStationLeaving();

 station.getSection().setBrakesOff();

 station.getSection().setTransportsStandardBwdOn();

 if (station.getNumberOfTrainsOnBlock() == 0) station.setState(CLEAR);

 break;

}

}

If some of the block states seem confusing, that's because it is an implementation of the multi-move function. The problem with multi-move that must be addressed is when switching from auto mode to manual mode while the trains are dispatching. The case DISPATCH is not actually implemented in manual mode, however if the block is switched from auto to manual, there must be something that can switch the block out of DISPATCH and into something manual mode can handle.
case ENTERING:

 station.getSection().setStationEntering();

 station.setState(WAITING);

 break;

This is the case of implementing the internal station handler. After this is done, nothing else needs to happen. The train will stop itself correctly. Therefore, we can just switch the state to WAITING right away.

The WAITING and READY states should look the same as the previous dummy block we created with the exception of stating to the station handler that the train is ready to move. WAITING means there is no clear block, so we implement setStationNextBlockOccupied(), and READY means there is a clear block somewhere, so we implement setStationNextBlockClear(). It doesn't matter which block is clear, it only tells the station handler that the station block is now allowed to move. The advance buttons on the control panel will dictate whether it can move forward or backward or both.

case DISPATCH:

 if (station.getNumberOfTrainsOnBlock() == 1 && station.getSection().isTrainBeforeCenterOfSection()) station.setState(ENTERING);

 if (station.getNumberOfTrainsOnBlock() == 0) station.setState(CLEAR);

 break;

This is the case that is called when the block is switched from auto mode to manual mode while it is dispatching. Since we don't want dispatch to continue if it is switched, we need to find a way to park the trains correctly. The first statement here determines if there is a train entering the block. Since it will not be in an ENTERING state, we must decide where the train is (trains are) on the block. If there are 2 trains on the block, the dispatch mode will continue. Also, if the train is leaving the block, there's no way we can stop it on the center of the block, so we will let it continue onto the next block. Once the block is void of trains, it will set back to CLEAR.

case DISPATCHREADY:

 station.setState(WAITING);

 break;

This is simply a state that is implemented in auto mode. Since the trains do not move in this state, we can simply just set it back to WAITING.

A complicated part of manual mode is processing blocks before/after a transfer switch. Since the switch location will also determine if these blocks will be able to move, we must implement switch direction into our WAITING and READY cases. It would look something like it does in our dummy block, but we'll have to integrate the getSwitchDirection() function. Let's assume here that the dummy block is before a block that is a transfer track(nextBlock/transferTable), and the transfer track's default direction is 0. This is what would result.
Case WAITING:

 dummy.getSection().setTransportsOff();

 dummy.getSection().setBrakesOn();

 if (transferTable.getSwitchDirection() == 0 && nextBlock.getState() == CLEAR && previousBlock.getState() == CLEAR) dummy.setState(READY);

 else if (transferTable.getSwitchDirection() == 0 && nextBlock.getState() == CLEAR) dummy.setState(READY_F);

 else if (previousBlock.getState() == CLEAR) dummy.setState(READY_R);

 break;

case READY:

 if (transferTable.getSwitchDirection() != 0 || nextBlock.getState() != CLEAR || previousBlock.getState() != CLEAR) dummy.setState(WAITING);

 break;

case READY_F:

 if (transferTable.getSwitchDirection() != 0 || nextBlock.getState() != CLEAR || previousBlock.getState() == CLEAR) dummy.setState(WAITING);

 break;

case READY_R:

 if ((transferTable.getSwitchDirection() == 0 && nextBlock.getState() == CLEAR) || previousBlock.getState() != CLEAR) dummy.setState(WAITING);

 break;

In the case of READY_R, the only condition that would change whether or not our dummy block will be able to move forward would be if the transfer switch is in the right place AND if it is clear. This is very important. Be sure to use parenthesis or it will not calculate the order correctly.

Next, I'd like to mention a little thing about storage tracks in the case of WAITING:
case WAITING:

 Train train = storage.getSection().getTrainOnSection();

 train.setLashedToTrack(TRUE);

 storage.getSection().setBrakesOn();

 storage.getSection().setTransportsOff();
This is also important because if there is a train in storage, the coaster will not switch to auto mode unless it is lashed to the track. We must implement that into our controller. It's not difficult, so it's not a big deal.

Hopefully this will now give a perspective of what the manual mode blocks should look like. Remember, this isn't a tutorial telling you how to achieve something exactly, it is a guide to help you create your own ideas.

That being said, let's move on to auto mode.

Let's start with our typical dummy block. Remember in auto mode, none of the trains will be able to move backward, so any state with _R will not be used. Also, in this case, we cannot switch from manual mode to auto mode while a train is moving, which is typical for any real roller coaster.

private void autoDummy()

{

switch (dummy.getState())

{

case CLEAR:

 dummy.getSection().setTransportsOff();

 dummy.getSection().setBrakesOn();

 break;

case APPROACHING:

 dummy.getSection().setBrakesTrim();

 if (dummy.getSection().isTrainOnSection()) dummy.setState(ENTERING);

 break;

case ENTERING:

 dummy.getSection().setBrakesTrim();

 dummy.getSection().setTransportsStandardDependingOnBrake();

 if (dummy.getSection().isTrainBehindBrakeTrigger()) dummy.setState(TRIGGER);

 break;

case TRIGGER:

 if (nextBlock.getState() == CLEAR)

 {

 nextBlock.setState(APPROACHING);

 dummy.setState(LEAVING);
 }

 else dummy.setState(WAITING);

 break;

case WAITING:

 dummy.getSection().setTransportsOff();

 dummy.getSection().setBrakesOn();

 if (nextBlock.getState() == CLEAR)

 {

 nextBlock.setState(APPROACHING);

 dummy.setState(LEAVING);

 }

 break;

case LEAVING:

 dummy.getSection().setBrakesOff();

 dummy.getSection().setTransportsStandardFwdOn();

 if (dummy.getNumberOfTrainsOnBlock() == 0) dummy.setState(CLEAR);

 break;

}

}

As you can see, we've implemented the TRIGGER state here instead of the READY states. This is because the block won't be controlled by the advance buttons, but rather by the script itself. The functions in this example should be pretty straight-forward. It doesn't matter in this case if the block can move backward because it won't in auto mode. Remember that it is important when setting a block to LEAVING that the next block is set to APPROACHING concurrently, wherever it occurs in the auto mode script.

The rough part is now implementing the multi-move within these typical functions. In the case of the blocks before the stations, we want them to behave normally when they are not dispatching. We also want the transfer block after the stations to be able to function correctly while there are 2 trains in the block. I'm going to post all 5 of these blocks and get into some detail. Please read through all 5 blocks and try to find how they are linked. Let's start with transfer:

private void autoTransfer()

{

switch (transfer.getState())

{

case CLEAR:

 transfer.getSection().setTransportsOff();

 transfer.getSection().setBrakesOn();

 break;

case APPROACHING:

 transfer.getSection().setBrakesOff();

 transfer.getSection().setTransportsStandardFwdOn();

 if (transfer.getNumberOfTrainsOnBlock() == 1) transfer.setState(ENTERING);

 break;

case ENTERING:

 if (transfer.getSection().isTrainBehindBrakeTrigger()) transfer.setState(TRIGGER);

 break;

case TRIGGER:

 if (lift.getState() == CLEAR && coasting1.getState() == CLEAR)

 {

 lift.setState(APPROACHING);

 transfer.setState(LEAVING);

 }

 else transfer.setState(WAITING);

 break;

case WAITING:

 transfer.getSection().setTransportsOff();

 transfer.getSection().setBrakesOn();

 if (lift.getState() == CLEAR)

 {

 lift.setState(APPROACHING);

 transfer.setState(LEAVING);

 }

 break;

case LEAVING:

 transfer.getSection().setBrakesOff();

 transfer.getSection().setTransportsStandardFwdOn();

 if (transfer.getNumberOfTrainsOnBlock() == 0) transfer.setState(CLEAR);

 if (transfer.getNumberOfTrainsOnBlock() == 2) transfer.setState(APPROACHING);

 break;

}

}

The first case I want to call to attention is the APPROACHING state. You'll notice I've opted to use getNumberOfTrainsOnBlock() instead of isTrainOnSection(). This is because of the LEAVING state. This is basically what supports the multiple trains on one block. There are of course three cases that can happen, the block has 0, 1, or 2 trains on it. We see looking at LEAVING that if the block is empty, it simply sets it back to CLEAR. If the block has 2 trains on it, that means the stations are in multi-move and the transfer needs to process this correctly. We see looking back at APPROACHING that nothing happens until there is only 1 train on the block, so if there are 2 trains on the block, the state will become APPROACHING but both trains will just continue to move until the first one is clear of the block. At this point, the second train can park itself correctly. This function is actually crucial because while there are multiple trains on a block, all of the locator functions will not work at all. For instance isTrainBeforeBrakeTrigger(), isTrainBehindBrakeTrigger(), isTrainBeforeCenterOfSection(), isTrainBehindCenterOfSection(). The reason this fails is simply because there are 2 trains on the block. At one point, all of these functions will return true, because there is a train behind AND before the brake trigger. That means that we can't determine where the trains are on the block until the block only has 1 train on it. It seems like not a big deal, but it is crucial!

In the TRIGGER state for this block, in order to have the blocks operate realistically to the actual coaster (Maverick), I've opted to not let it advance until both the lift and coasting1 blocks are clear.

Other than these things, this block should look mostly like the dummy block.

Next, we will look at the station1 block. This is basically where the entire multi-move is initialized. Let's take a look:

private void autoStation1()

{

switch (station1.getState())

{

case CLEAR:

 station1.getSection().setTransportsOff();

 station1.getSection().setBrakesOn();

 break;

case APPROACHING:

 station1.getSection().setBrakesOff();

 station1.getSection().setTransportsStandardFwdOn();

 if (station1.getSection().isTrainOnSection()) station1.setState(ENTERING);

 break;

case ENTERING:

 station1.getSection().setStationEntering();

 station1.setState(WAITING);

 break;

case WAITING:

 station1.getSection().setStationNextBlockOccupied();

 if (transfer.getState() == CLEAR && lift.getState() == CLEAR) station1.setState(DISPATCHREADY);

 break;

case DISPATCHREADY:

 station1.getSection().setStationNextBlockClear();

 if (station1.getSection().isStationWaitingForAdvance() && station2.getSection().isStationWaitingForAdvance())

 {

 pre2Time = 0;

 pre1Time = 0;

 station2Time = 0;

 station1Time = 0;

 transfer.setState(APPROACHING);

 if (pre2.getState() != CLEAR) pre2.setState(DISPATCH);

 if (pre1.getState() != CLEAR) pre1.setState(DISPATCH);

 station2.setState(DISPATCH);

 station1.getSection().setStationLeaving();

 station1.setState(DISPATCH);

 }

 break;

case DISPATCH:

 station1Time += sim.getCurSimulationTickSec();

 station1.getSection().setStationLeaving();

 station1.getSection().setBrakesOff();

 station1.getSection().setTransportsStandardFwdOn();

 if (station1Time >= 19 && station1.getNumberOfTrainsOnBlock() != 2&& station2.getNumberOfTrainsOnBlock() != 2) station1.setState(ENTERING);

 break;

}

}

In the cases of CLEAR, APPROACHING, and ENTERING, I've opted to write them just like any other block. Unfortunately none of these states will be used unless the coaster is only operating 2 or 3 trains or something like that. For that reason, it is still important to have them.

Next, WAITING in this block should also look familiar. However, for the same reason as the transfer block, we will wait until transfer AND lift blocks are clear. In the case of this script, the lift block is extended about 1700 feet so that it ends right before the train enters the tunnel. This eliminates the need for a track trigger completely.

The case DISPATCHREADY is a state I created in order to set the station blocks as ready to move. You'll see that this station will not move until both stations are waiting for advance (i.e. restraints locked and checked and gates closed). We see here that when that condition is met, the entire multi-move is set in motion. We set all of our timers back to 0 so it is timed correctly for each block. Then we set transfer approaching and start all of the timers as we are dispatching the first train. In the case of the pre1 or pre2 blocks, we'll determine if they are clear or not before we start multi-move. This will be in the case that the coaster is running fewer than 6 trains. The empty blocks will simply continue to function as normal blocks.

Let's look at DISPATCH. First thing we do is set the timer in motion. If you're not familiar with this function, check the blockscript from the script park. Next, we will set the station leaving so that the internal station handler is no longer controlling the train. Then we can set the transports on from this script. The process itself is well timed, and we see that after about 19 seconds, the train that we want to park is entering the block. However, this is also while the train ahead of it is in the process of leaving the block. Therefore, at 19 seconds, the block will have 2 trains on it. Another glitch I've had to work around is the internal station handler. It causes some grief at times. The problem I came across was that if I set a train as stationEntering(), whatever station it is in will set to “centering.” This is a problem if the one train is in 2 stations, because both stations will try to center the same train. You can see my work around. I've opted not to include the station handler until the first train is only on the station1 block. In other words, if station1 and station2 both don't have 2 trains on them. We then set it to ENTERING and the station handler takes over correctly.

And that is the station1 block. Simple?

Next I'll show the station2 block. There will be similarities, but it won't need to be as complicated.

private void autoStation2()

{

switch (station1.getState())

{

case CLEAR:

 station2.getSection().setTransportsOff();

 station2.getSection().setBrakesOn();

 break;

case APPROACHING:

 station2.getSection().setBrakesOff();

 station2.getSection().setTransportsStandardFwdOn();

 if (station2.getSection().isTrainOnSection()) station2.setState(ENTERING);

 break;

case ENTERING:

 station2.getSection().setStationEntering();

 station2.setState(WAITING);

 break;

case WAITING:

 station2.getSection().setStationNextBlockOccupied();

 if (transfer.getState() == CLEAR && lift.getState() == CLEAR && coasting1.getState() == CLEAR) station2.setState(DISPATCHREADY);

 break;

case DISPATCHREADY:

 station2.getSection().setStationNextBlockClear();

 break;

case DISPATCH:

 station2Time += sim.getCurSimulationTickSec();

 if (station2Time >= 3)

 {

 station2.getSection().setStationLeaving();

 station2.getSection().setBrakesOff();

 station2.getSection().setTransportsStandardFwdOn();

 }

 if (station2Time >= 22 && station2.getNumberOfTrainsOnBlock() != 2) station2.setState(ENTERING);

 break;

}

}

In WAITING, you can see that this station block also must wait until transfer and lift are clear. This is so that both stations become ready to dispatch at the same time and we don't have an instance where one of them tries to dispatch before the other is ready. Since station1 handles everything, we don't really need anything within DISPATCHREADY. DISPATCH in this block is similar to station1. However, we see that there is a 3 second delay before the train starts to move. This is simply realistic to Maverick. If we wanted, we could script that the trains start to move literally at the same time. Again, at 22 seconds, the train is ready to enter the station handler. Once again, this was simply timing based on the specific coaster.

Next block is pre1.

private void autoPre1()

{

switch (pre1.getState())

{

case CLEAR:

 pre1.getSection().setTransportsOff();

 pre1.getSection().setBrakesOn();

 break;

case APPROACHING:

 pre1.getSection().setBrakesOff();

 pre1.getSection().setTransportsStandardFwdOn();

 if (pre1.getSection().isTrainOnSection()) pre1.setState(ENTERING);

 break;

case ENTERING:

 if (pre1.getSection().isTrainBehindBrakeTrigger()) pre1.setState(TRIGGER);

 break;

case TRIGGER:

 if (station2.getState() == CLEAR)

 {

 station2.setState(APPROACHING);

 pre1.setState(LEAVING);

 }

 else pre1.setState(WAITING);

 break;

case WAITING:

 pre1.getSection().setTransportsOff();

 pre1.getSection().setBrakesOn();

 break;

case DISPATCH:

 pre1Time += sim.getCurSimulationTickSec();

 if (pre1Time >= 6)

 {

 pre1.getSection().setBrakesOff();

 pre1.getSection().setTransportsStandardFwdOn();

 }

 if (pre1.getNumberOfTrainsOnBlock() == 0) pre1.setState(CLEAR);

 break;

case LEAVING:

 pre1.getSection().setBrakesOff();

 pre1.getSection().setTransportsStandardFwdOn();

 if (pre1.getNumberOfTrainsOnBlock() == 0) pre1.setState(CLEAR);

 break;

}

}

At this point in the tutorial, all of this should look familiar. It is simply a combination of a typical block and the multi-move stations. However, we jump for joy because we don't have to worry about the station handler! You'll see that the pre2 block is also similar. That brings our multi-move function to a close. Happy debugging, suckers!

I'd like to also include the waiting block here.

private void autoWaiting()

{

switch (waiting.getState())

{

case CLEAR:

 waiting.getSection().setTransportsOff();

 waiting.getSection().setBrakesOn();

 break;

case APPROACHING:

 waitingTime = 0;

 if (waiting.getSection().isTrainOnSection()) waiting.setState(ENTERING);

 break;

case ENTERING:

 waitingTime += sim.getCurSimulationTickSec();

 if (waitingTime >= 2)

 {

 waiting.getSection().setBrakesOff();

 waiting.getSection().setTransportsStandardFwdOn();

 }

 if (waiting.getSection().isTrainBehindBrakeTrigger()) waiting.setState(TRIGGER);

 break;

case TRIGGER:

 if (pre2.getState() == CLEAR)

 {

 pre2.setState(APPROACHING);

 waiting.setState(LEAVING);

 }

 else waiting.setState(WAITING);

 break;

case WAITING:

 waiting.getSection().setTransportsOff();

 waiting.getSection().setBrakesOn();

 if (pre2.getState() == CLEAR)

 {

 pre2.setState(APPROACHING);

 waiting.setState(LEAVING);

 }

 break;

case LEAVING:

 waiting.getSection().setBrakesOff();

 waiting.getSection().setTransportsStandardFwdOn();

 if (waiting.getNumberOfTrainsOnBlock() == 0) waiting.setState(CLEAR);

 break;

}

}

I only wanted to include this block to demonstrate how to use an individual timer. On the real coaster (Maverick) the transports and brakes remain off once the train enters them for about 2 seconds. We just include sim.getCurSimulationTickSec(). However, every time, we have to reset our waitingTime to 0. We will include that in the state right before the one it is implemented in. In this case, APPROACHING.
And with that , let's bring the tutorial to a close. I hope this has helped you understand how the block system controller is laid out. I've demonstrated ways in which the script is customizable as well as ways it must be very strict. Be creative. If there's something you can change about your script, do it. You have nothing to lose! Also, be prepared to re-write a script two or three times. If your script has too many flaws in it, don't try to fix them one at a time. First of all, it's brutal...but mostly, it is hard to keep track of the changes you make. It is much better to rewrite the script entirely, but keeping in mind the bugs you need to fix. That way the script can be more uniform and it will function better. Once again, I am always willing to help with suggestions, problems, or anything you'd like to know about the block system controller. (coasterlover420@gmail.com)
Happy Scripting!! :)

~Jason~
